Experiment

Preparation and standardization of Sodium thiosulfate

Aim:- To Prepare and standardization ~0.1 M sodium thiosulfate solution.

Reference:-Indian Pharmacopoeia by Ministry of Health and Family Welfare, Gov. of India, Volume I 2007, P-316.

Practical book of Pharmaceutical Chemistry, Fourth edition edited by A.H Beckett, J.B Stenlake, CBS Publishers and Distributors, 2005 P-187.

Requirements:

- Chemical Requirement:- Sodium thiosulfate pentahydrate (Na₂S₂O₃·5H₂O Molar mass ≈ **248.18 g·mol**⁻¹, Sodium carbonate (Na₂CO₃), Potassium iodate (KIO₃) Molar mass ≈ **214.00 g·mol**⁻¹, primary standard (dry at 120 °C for 1–2 h; cool in desiccator), Potassium iodide (KI), Hydrochloric acid ~1 M (or sulfuric acid ~1 M), Starch indicator, fresh 0.5% w/v, distilled water (CO₂-free).
- Glassware Requirement:- Volumetric flask (1 L), analytical balance (±0.1 mg), 50 mL burette, pipettes (10, 25 mL), conical flasks (250–500 mL), measuring cylinder, amber storage bottle, glass rod, funnel.

Principle:

1. In acidified iodide, iodate liberates iodine:

$$IO_3^- + 5 I^- + 6 H^+ \rightarrow 3 I_2 + 3 H_2O$$

2. Iodine is titrated with thiosulfate:

$$I_2 + 2 S_2 O_3^{2-} \rightarrow 2 I^- + S_4 O_6^{2-}$$

Stoichiometric link: 1 mol KIO₃ \equiv 6 mol S₂O₃²⁻.

Hence, from a weighed KIO₃, you can compute the exact molarity/normality of thiosulfate

Preparation of ~0.1 M Na₂S₂O₃

- 1. Weigh 24.8 g Na₂S₂O₃·5H₂O into a beaker.
- 2. **Add** 0.10 g Na₂CO₃.
- 3. **Dissolve** in ~500 mL freshly boiled & cooled water.
- 4. **Transfer** to a 1 L volumetric flask; rinseings included.
- 5. Make up to the mark with the same water; mix well.
- 6. Store in an amber bottle, well-stoppered, 24 h before use.

Approximate molarity calculation:

$$M = rac{ ext{mass (g)}}{ ext{M.W. (g/mol)} imes V(ext{L})} = rac{24.8}{248.18 imes 1.000} = 0.0999 \; M \; pprox 0.1 \; M$$

Standardization with KIO₃ (Primary Standard)

- 1. Accurately weigh about 0.037 g KIO₃ into a conical flask.
- 2. Add \sim 2 g KI and 25–30 mL distilled water.
- 3. Add 10 mL 1 M HCl \rightarrow iodine (brown solution) liberated.
- 4. Titrate with Na₂S₂O₃ solution until pale yellow.
- 5. Add 1-2 mL starch \rightarrow deep blue color appears.
- 6. Continue titration until sharp colorless endpoint.
- 7. Repeat for 3 concordant readings (≤0.1 mL difference)

Observations (example table)

Trial	Mass of KIO ₃ (g)	Burette Reading (mL)	Titre (mL)
1	0.03720	0.00 - 15.18	15.18
2	0.03720	0.00 - 15.20	15.20
3	0.03720	0.00 - 15.22	15.22
Mean	0.03720		15.20

Calculations

Step 1. Moles of KIO₃ used

$$n(KIO_3) = rac{m}{M.W.} = rac{0.03720}{214.00} = 1.738 imes 10^{-4} \ mol$$

Step 2. Moles of Na₂S₂O₃ required

 $(1 \text{ mol KIO}_3 \rightarrow 6 \text{ mol Na}_2S_2O_3)$

$$n(S_2O_3^{2-}) = 6 \times n(KIO_3) = 6 \times 1.738 \times 10^{-4} = 1.043 \times 10^{-3} \ mol$$

Step 3. Volume of thiosulfate used

$$V = 15.20 \ mL = 0.01520 \ L$$

Step 4. Molarity of Na₂S₂O₃

$$M = rac{n}{V} = rac{1.043 imes 10^{-3}}{0.01520} = 0.0686~M$$

Viva Voce Questions

- 1. Why is starch used as an indicator?
- 2. What is the reaction involved in the standardization process?
- 3. How do you calculate the exact molarity of sodium thiosulfate solution?
- 4. Why is it important to use freshly boiled and cooled water for preparation?
- 5. How is the endpoint of the titration detected?