Precipitation titrations

Presented By;-

Mr. Samarpan Mishra (Assistant Professor)

Specialization:- Pharmaceutical Chemistry

Precipitation Titrations

Definition:-Precipitation titrations are a type of **volumetric analysis** in which the <u>titration reaction is based on the</u> **formation of a precipitate** when <u>two soluble salts react in solution</u>. These titrations are used to determine the concentration of ions that form insoluble compounds (precipitates).

They are commonly used to determine halide ions (like Cl⁻, Br⁻, I⁻) using silver nitrate (AgNO₃) as the titrant.

Example:- Titration of Sodium Chloride (NaCl) with Silver Nitrate (AgNO₃)

- **Reaction:**
 - NaCl+AgNO3→AgCl↓+ +NaNO3
- ► Indicator used: Potassium chromate (K₂CrO₄)
- Endpoint: Formation of red-brown precipitate of silver chromate (Ag₂CrO₄) indicates that all chloride ions have reacted.

Mohr's Method

Discovery:

➤ Discovered by **Karl Friedrich Mohr** in the **mid-19th century**.

Principle:

- ➤ Direct titration of chloride or bromide ions with AgNO₃, using potassium chromate (K₂CrO₄) as an indicator.
- ➤ Silver ions react first with chloride ions to form AgCl, and after all Cl⁻ is consumed, they react with chromate ions to form red Ag₂CrO₄, indicating the endpoint.

Reaction:

```
Main reaction:- Ag++Cl- \rightarrow AgCl\downarrow (white ppt)
At endpoint:- 2Ag++CrO42- \rightarrow Ag2CrO4\downarrow (red ppt)
```

Endpoint:

➤ Appearance of red-brown precipitate of silver chromate (Ag₂CrO₄).

Limitations:

- ➤ pH must be near **neutral** (6.5–10) too acidic dissolves Ag₂CrO₄; too basic forms AgOH.
- ➤ Not suitable for iodide (I⁻) titration.
- > Cannot be used in colored or turbid solutions.
- ➤ CO₂ in water affects pH; must be removed.

Volhard's Method

Discovery:

Developed by **Jacob Volhard**, a German chemist, in the **late 19th century**.

Principle:

➤ Back titration method. Excess standard AgNO₃ is added to chloride-containing sample to form AgCl. The excess Ag⁺ is titrated with standard thiocyanate (KSCN), using ferric ammonium sulfate as an indicator.

Reaction:

- **Precipitation of chloride:- Ag++ Cl-** → **AgCl**↓
- **▶** Back titration:- $Ag_+ + SCN_- \rightarrow AgSCN_{\downarrow}$
- ightharpoonup At endpoint:- Fe3++ SCN- \rightarrow FeSCN2+ (red complex)

Endpoint:

> Appearance of blood red color due to ferric thiocyanate complex.

Limitations:

- ➤ AgCl must be filtered before back titration to avoid interference.
- Accurate only in acidic medium.
- ➤ Interference from other halides and ions that form precipitates with Ag⁺ or SCN⁻.

Modified Volhard's Method

Principle:

A variation of Volhard's method where the AgCl precipitate is not filtered. A protective agent like nitrobenzene is added to coat the AgCl, preventing reaction with thiocyanate.

Reaction:

> Same as Volhard's, but AgCl remains in solution, and nitrobenzene prevents further reaction.

Endpoint:

 \triangleright Blood red color from Fe³⁺ + SCN⁻.

Limitations:

- ➤ Addition of nitrobenzene or similar solvent is crucial for accuracy.
- ➤ Not suitable for large amounts of precipitate.
- ➤ More complex setup than original Volhard's method.

Fajans Method

Discovery:

> Developed by Kasper Fajans, a Polish-American chemist, in the early 20th century.

Principle:

➤ Based on **adsorption indicators**. After all chloride has reacted with Ag⁺, the excess Ag⁺ forms a layer on the precipitate surface (AgCl). An indicator like **fluorescein** adsorbs onto this surface and changes color.

Reaction:

$$Ag++Cl- \rightarrow AgCl\downarrow$$

At endpoint:-Indicator (e.g., **fluorescein** or eosin) adsorbs on surface of precipitate, changing color due to interaction with surface charge.

Endpoint:

> Color change of indicator adsorbed on AgCl surface (e.g., pale yellow to pink with fluorescein).

Limitations:

- Works only in **neutral to slightly acidic pH**.
- > Requires **clear solution** and controlled lighting for endpoint visibility.
- ➤ Indicator choice is critical and sensitive to pH.
- Not suitable for back titration.

Estimation of Sodium Chloride (NaCl)

Aim:- To estimate the amount of sodium chloride present in a given solution by Mohr's method using silver nitrate as titrant and potassium chromate as indicator.

Principle:-Sodium chloride (NaCl) contains chloride ions (Cl⁻) which react with silver nitrate (AgNO₃) to form a white precipitate of silver chloride (AgCl). After all Cl⁻ has reacted, the next drop of AgNO₃ reacts with the indicator (K₂CrO₄) to form red-brown silver chromate (Ag₂CrO₄), which marks the endpoint.

Chemical Reactions:

Titration reaction:- AgNO3+NaCl → AgCl↓+NaNO3

At endpoint:- 2AgNO3+K2CrO4 → Ag2CrO4↓+2KNO3

Requirement:

- ➤ Chemical Required:-Standard AgNO₃ solution (e.g., 0.1 N), Sodium chloride solution (unknown concentration), Potassium chromate indicator (5% solution), Distilled water.
- ➤ Glassware Requirement:- conical flask, burette, Beaker, measuring cylinder.

Procedure:

- 1. Pipette **25.0 mL** of sodium chloride solution into a clean conical flask.
- 2. Add **1–2 mL of potassium chromate** indicator (yellow in color).
- 3. Titrate with **standard AgNO**₃ solution from a burette.
- 4. Swirl the flask continuously.
- 5. Stop titration when a **permanent red-brown color** appears (Ag₂CrO₄), indicating the endpoint.
- 6. Note the volume of AgNO₃ used.

Calculation:

$$\mathrm{NaCl}\left(\mathrm{g}\right) = \frac{V_1 \times N_1 \times 58.5}{1000}$$

Where:

- V_1 = Volume of AgNO₃ used (in mL)
- N_1 = Normality of AgNO₃
- 58.5 = Molar mass of NaCl (g/mol)

Endpoint:

➤ Appearance of a permanent brick-red color due to Ag₂CrO₄.

