Non aqueous titration

Presented By;-

Mr. Samarpan Mishra (Assistant Professor)

Specialization:- Pharmaceutical Chemistry

Non Aqueous Titration

<u>In ordinary acid-base titrations, Water is used as the solvent.</u> However, some substances:-

Are very weak acids or very weak bases, so they do not ionize enough in water for an accurate titration. Solution: Replace water with a non-aqueous solvent that promotes better solubility and stronger ionization of the analyte. Are sparingly soluble in water.

Definition:-Non-aqueous titration is a volumetric titration method carried out in a **solvent** other than water.

Types of Non Aqueous Solvents

Typically, there exist four types of solvents used in the non-aqueous titration of a given analyte. These are:-

- 1. **Aprotic Solvents** These solvents are neutral in charge and are chemically inert. They also generally have a low dielectric constant. **Examples** of these types of solvents include chloroform and benzene.
- 2. **Protophilic Solvents** These solvents have a basic character and tend to react with the acids they come in contact with, leading to the formation of solvated protons. **Examples** of protophilic solvents are ammonia and pyridine.
- 3. **Protogenic Solvents** These solvents have a more acidic character and tend to have a levelling effect on the bases they come in contact with. **Examples** of protogenic solvents used in non-aqueous titration are sulphuric acid and acetic acid.
- 4. **Amphiprotic Solvents** These solvents have properties which are protophilic as well as protogenic. **Examples** of these types of solvents are acetic acid and alcohols.

1. Acidimetry

Definition:-Acidimetry is the process of <u>titrating an acid with a standard alkali</u> <u>solution</u> to determine the concentration or amount of acid present.

Principle:-Based on the **neutralization reaction** between an acid and a base:

Acid + Base → Salt + Water

An alkali of known strength is used as the titrant.

Titrant:-Standard alkali: NaOH, KOH, Na₂CO₃.

Analyte:-Acid (strong or weak): HCl, H₂SO₄, acetic acid.

Indicators

Strong acid vs strong base: Phenolphthalein or methyl orange.

Weak acid vs strong base: Phenolphthalein.

Example:-Determination of HCl using 0.1 N NaOH with phenolphthalein indicator.

2. Alkalimetry

Definition:-Alkalimetry is the process of <u>titrating a base (alkali) with a standard acid solution</u> to determine the concentration or amount of alkali present.

Principle:-Based on the **neutralization reaction**:

Base + Acid → Salt + Water

> An acid of known strength is used as the titrant.

Titrant:-Standard acid: HCl, H₂SO₄.

Analyte:-Alkali: NaOH, KOH, Na₂CO₃.

Indicators:-

- > Strong base vs strong acid: Phenolphthalein or methyl orange.
- **Weak base vs strong acid:** Methyl orange.

Example:-Determination of NaOH using 0.1 N HCl with phenolphthalein indicator.

Estimation of Sodium benzoate and Ephedrine HCI

Link:- https://pharmrecord.com/bp108p/

