Gravimetry Analysis

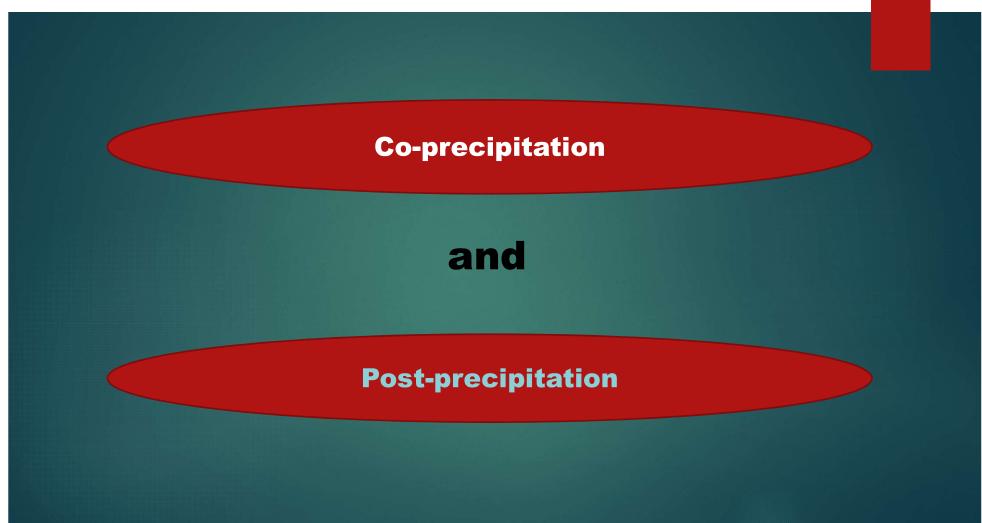
Presented By;-

Mr. Samarpan Mishra (Assistant Professor)

Specialization:- Pharmaceutical Chemistry

Gravimetry Analysis

Gravimetric Analysis is a quantitative method in analytical chemistry used to determine the amount of an analyte based on the mass of a solid. It involves converting the analyte into a pure, stable, and weighable form.


Principle of Gravimetric Analysis:

Gravimetric analysis is based on the **law of conservation of mass**. The amount of the desired constituent (analyte) present in a compound is determined by converting it into a pure and stable compound of known composition that can be weighed accurately.

☐ The most common gravimetric method involves **precipitation**: the analyte is precipitated out as an **insoluble compound**, which is filtered, washed, dried (or ignited), and weighed.

Steps Involved in Gravimetric Analysis

S.No	Step	Description
1	Preparation of Solution	Dissolve the sample containing the analyte in an appropriate solvent, usually water or acid.
2	Precipitation	Add a suitable reagent to form an insoluble precipitate with the analyte. Conditions like temperature, pH, and reagent concentration are controlled to ensure complete and pure precipitation.
3	Digestion of Precipitate	The precipitate is allowed to stand (age) to improve filterability and purity by forming larger, purer crystals.
4	Filtration	The precipitate is separated from the solution using filter paper or a crucible.
5	Washing	The precipitate is washed with distilled water or a suitable solvent to remove impurities (e.g., adsorbed ions).
6	Drying/Ignition	The precipitate is dried in an oven or ignited in a furnace to convert it into a known and stable chemical form.
7	Weighing	The final stable form of the precipitate is weighed using an analytical balance.
8	Calculation	The amount of analyte is calculated from the mass of the dried precipitate using stoichiometry.

Co-precipitation

Definition:- Co-precipitation is the phenomenon where **impurities that are normally soluble** in the solution **get incorporated** into the precipitate along with the analyte during its precipitation.

Types of Co-precipitation:

Туре	Description	Example
Surface Adsorption	Impurities adhere to the surface of the precipitate, especially in colloidal particles.	Adsorption of alkali metal ions on BaSO ₄ precipitate.
Occiusion	Impurities get trapped within the crystal as it grows rapidly.	Na ⁺ or Cl ⁻ trapped inside AgCl crystals.
	Foreign ions of similar size and charge replace the main ion in the crystal structure.	K ⁺ replacing NH ₄ ⁺ in NH ₄ MgPO ₄ .

How to Minimize Co-precipitation:

- 1. Use dilute solutions
- 2. Slow addition of precipitating reagent
- 3. Stirring the solution
- 4. Digesting the precipitate (aging it in solution)
- **5. Re-precipitation** (dissolving and precipitating again)

Post-precipitation

Definition:

Post-precipitation occurs when **impurities precipitate after the main precipitation is complete** and deposit on the already-formed crystals of the desired compound.

- ☐ The impurity forms its own solid and physically deposits on the main precipitate.
- ☐ It usually happens if the precipitate is left standing too long in the solution.

How to Prevent Post-precipitation:

- 1. Filter the precipitate immediately after digestion
- 2. Avoid prolonged standing of the precipitate in the mother liquor
- 3. Use **selective reagents** to prevent formation of other precipitates

Estimation of barium sulphate.

Link:- https://pharmrecord.com/bp108p/

Diazotisation Titration

Definition:- Diazotisation Titration is a type of volumetric titration used to estimate primary aromatic amines, based on their reaction with nitrous acid to form diazonium salts under cold, acidic conditions.

☐ It is commonly used in **pharmaceutical and dye analysis**, especially for the **quantitative determination of sulfa drugs**.

Principle of Diazotisation Titration

Principle:-In diazotisation titration, a primary aromatic amine reacts with nitrous acid (HNO₂) under cold and acidic conditions to form a diazonium salt.

Since nitrous acid is unstable, it is generated in situ by reacting sodium nitrite (NaNO2) with hydrochloric acid (HCl).

Stepwise Chemical Reactions:

Generation of Nitrous Acid (in situ):- NaNO₂ + HCl → HNO₂ + NaCl

Diazotisation Reaction (Main Reaction):-Ar-NH₂ + HNO₂+HCl → Ar-N₂+Cl⁻ + 2H₂O

Where:

- $ightharpoonup Ar-NH_2 = Primary aromatic amine (e.g., aniline)$
- ➤ HNO₂ = Nitrous acid (generated in situ)
- $Ar-N_2+Cl^- = Diazonium chloride (diazonium salt)$

Methods of Diazotisation Titration

S.No	Method	Description
1	Direct Titration	 □ The sample containing a primary aromatic amine is directly titrated with standard sodium nitrite (NaNO₂) solution at 0–5°C in an acidic medium (usually HCl). □ The endpoint is detected using starch-iodide paper (external indicator) or KI-starch solution (internal indicator), which gives a blue color due to liberated iodine.
2	Back Titration Method	 An excess known amount of standard sodium nitrite is added to the amine solution. After complete diazotisation, the unreacted nitrite is titrated with a standard sulphanilic acid solution or another standard aromatic amine. This method is useful when the endpoint is difficult to detect directly.
3	Blank Titration	 A blank titration is performed under the same conditions but without the analyte (amine). It helps determine how much nitrite reacts with the acid alone. The volume consumed in the blank is subtracted from the main titration to get the accurate volume of nitrite that reacted with the analyte.

Applications of Diazotisation Titration

S.No.	Application Area	Details / Examples
1	Pharmaceutical Analysis	Quantitative estimation of sulfa drugs like sulfanilamide, sulfadiazine, sulfapyridine
2	Dye Industry	Analysis of primary aromatic amines used in azo dye manufacturing
3	Quality Control	Determination of purity of raw materials containing aromatic amines
4	Organic Chemistry Research	Identification and estimation of primary aromatic amines in synthesized compounds
5	Forensic Chemistry	Detection and analysis of aromatic amines in criminal or toxicological samples
6	Environmental Testing	Monitoring of industrial effluents containing aromatic amines
7	Analytical Method Development	Standardization of sodium nitrite solution and indicator systems

