Complexometric titration

Presented By;-

Mr. Samarpan Mishra (Assistant Professor)

Specialization:- Pharmaceutical Chemistry

Complexometric Titration

Definition:- Complexometric titration is a type of volumetric analysis in which a **complexing agent (ligand)** is used to form a **stable, water-soluble complex** with the metal ion in solution. It is most commonly used for the **determination of metal ions** such as Ca^{2+} , Mg^{2+} , Zn^{2+} , etc.

Key Features:

- ➤ It uses a **chelating agent** (most commonly EDTA).
- ➤ The endpoint is usually detected using a **metal ion indicator** (e.g., Eriochrome Black T).
- > The titration involves **formation of a colored complex** which changes at the endpoint.

Example of Complexometric Titration

Example: Estimation of Calcium and Magnesium in

Hard Water

Reaction:

$$M_{2+} + EDTA_{4-} \rightarrow [M-EDTA]_{2-}$$

Where $M^{2+} = Ca^{2+}$ or Mg^{2+}

Titrant: EDTA (Ethylenediaminetetraacetic acid)

Indicator: Eriochrome Black T (EBT)

Medium: Ammonia buffer (pH ~10)

Procedure (Simplified):

- 1. A sample of hard water is taken.
- 2. A few drops of Eriochrome Black T indicator are added the solution turns **wine red** (metal-indicator complex).
- 3. The solution is titrated with standard EDTA solution.
- 4. Endpoint: Wine red color changes to **blue**, indicating that all Ca²⁺ and Mg²⁺ have reacted with EDTA.

Applications:

- 1. Water hardness analysis
- 2. Determination of metal ions in pharmaceuticals and food

Classification of Complexometric Titration

- 1. DIRECT TITRATION
- 2. INDIRECT TITRATION
- 3. BACK TITRATION
- 4. REPLACEMENT OR SUBSTITUTION TITRATION

1. Direct Titration

Direct Titration:-

- □ This is the simplest method, involving the direct titration of the metal ion solution with a standard EDTA solution until the endpoint is reached.
- □ It is suitable when the metal ion reacts rapidly and effectively with the indicator and EDTA at the appropriate pH.
- Examples of metals determined by direct titration include copper, zinc, barium, mercury, aluminium, lead, bismuth, and chromium.

2. Indirect Titration

Indirect or Alkalimetric Titration:

- □ Used for determining anions that do not directly react with EDTA.
- ☐ The anion is first precipitated by adding an excess of a metal cation.
- ☐ The excess metal ions in the filtrate are then titrated with a standard EDTA solution.
- ☐ This allows for the indirect estimation of the anion concentration.
- □ In alkalimetric titration, the reaction of the metal ion with disodium EDTA liberates hydrogen ions, which can then be titrated with a standard base like sodium hydroxide using an acid-base indicator.

3. Back Titration

Back Titration:

- □ In cases where the metal ion reacts too slowly with EDTA, precipitates at the required pH, or lacks a suitable indicator, an excess of standard EDTA solution is added to the metal ion solution.
- □ The excess unreacted EDTA is then back-titrated with a standard solution of another metal ion (e.g., zinc or magnesium).
- □ The difference between the initial EDTA added and the amount back-titrated gives the amount of EDTA that reacted with the metal ion of interest.

4. Replacement or Substitution Titration

Replacement or Substitution Titration:

- ☐ This method is employed when the direct or back titration methods fail to provide sharp endpoints due to the instability of the metal-indicator complex or a slow reaction with the indicator.
- □ An excess of a weak EDTA complex of another metal (e.g., Mg-EDTA or Zn-EDTA) is added to the analyte solution.
- □ The metal ion of interest displaces the metal from the weak EDTA complex, forming a more stable complex with EDTA.
- □ The liberated metal ions from the original weak complex are then titrated with a standard EDTA solution.

Metal Ions Indicaters

Metal ion indicators are organic compounds used in complexometric titrations, especially with EDTA, to visually signal the presence or absence of free metal ions in a solution.

These indicators form **weak**, **colored complexes** with metal ions and change color when the metal ion is removed by a stronger chelating agent like EDTA.

Common Metal Ions Indicaters

Indicator	Metal Ions Detected	Color Change at Endpoint
Eriochrome Black T	Ca^{2+}, Mg^{2+}	Wine-red \rightarrow Blue
Murexide	Ca^{2+}	$Pink \rightarrow Purple$
Calcon	Ca^{2+}, Mg^{2+}	$Red \rightarrow Blue$
Xylenol Orange	Fe^{3+}, Bi^{3+}	$Red \rightarrow Yellow$
PAN (1-(2-pyridylazo)-2-naphthol)	Many metal ions	Red → Yellow/orange

Masking Reagents

Definition:- Masking agents are **chemical substances** that **prevent certain metal ions** from reacting with the titrant (e.g., EDTA) by **forming stable, non-reactive complexes**. This allows selective titration of desired metal ions in the presence of others.

Purpose of Masking:

- ☐ To eliminate interference from unwanted metal ions.
- ☐ To enhance selectivity in complexometric titrations.

Examples of Masking Agents

Masking Agent	Masked Metal Ion	Remarks
Potassium cyanide (KCN)	Cu^{2+} , Cd^{2+} , Zn^{2+}	Forms stable cyanide complexes
Thioglycolic acid	Hg ²⁺ , Pb ²⁺	Forms stable complexes with heavy metals
Triethanolamine (TEA)	Al ³⁺ , Fe ³⁺ , Cr ³⁺	Used to mask trivalent metal ions
Oxalate or tartrate	Fe ³⁺ , Al ³⁺ , Mn ²⁺	Binds strongly to metals in alkaline conditions
EDTA (in excess)	Ca ²⁺ , Mg ²⁺	Can itself act as a masking agent if added earlier

Demasking Reagents

Definition:-Demasking agents are chemicals that **release a masked metal ion** by breaking the masked complex, making the metal ion **available for titration**.

Purpose of Demasking:

- ☐ To selectively titrate masked metal ions after the titration of other ions.
- ☐ Allows **stepwise analysis** of multiple metal ions.

Examples of Demasking Agents:

Demasking Agent	Releases Metal From	Remarks
Formaldehyde	CN ⁻ complexes (e.g., Cu ²⁺ -CN ⁻)	Destroys cyanide complexes
H ₂ S (hydrogen sulfide)	Cu^{2+}, Pb^{2+}	Precipitates metal sulfides
Acetone or acids	Oxalate, tartrate complexes	Breaks weak complexes
UV light (photolysis)	Some masking complexes	Photochemically decomposes masking agent

Estimation Of Magnesium Sulphate

Link:- https://pharmrecord.com/bp108p/

Estimation Of Calcium Gluconate

Link:- https://pharmrecord.com/bp108p/

