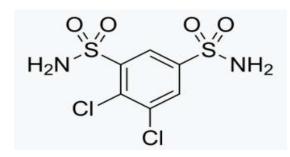
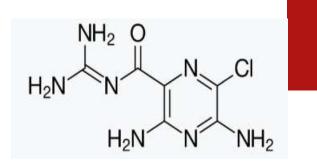
Unit-II/Part-B

Diuretics

PRESENTED BY;MR. SAMARPAN MISHRA (ASSISTANT PROFESSOR)
SPECIALIZATION:- PHARMACEUTICAL CHEMISTRY


Diuretics

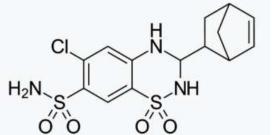
- I. Diuretics are medications that increase the excretion of water and electrolytes (mainly sodium and chloride) from the body through urine.
- II. They act on the kidneys to promote diuresis (urine production).
- III. Diuretics are primarily used in the treatment of hypertension, heart failure, edema, and certain kidney disorders.


Classification of Diuretics

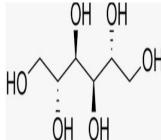
- 1. Carbonic anhydrase inhibitors:- Acetazolamide*, Methazolamide, Dichlorphenamide.
- 2. Thiazides:- Chlorthiazide*, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide.
- 3. Loop diuretics:- Furosemide*, Bumetanide, Ethacrynic acid.
- 4. Potassium sparing Diuretics:- Spironolactone, Triamterene, Amiloride.
- 5. Osmotic Diuretics: Mannitol.

Methazolamide

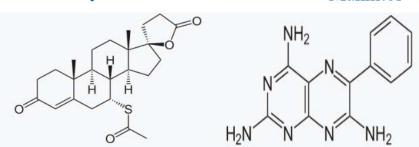
Dichlorphenamide



Amiloride


Hydrochlorothiazide

Hydroflumethiazide


Cyclothiazide

Mannitol

Bumetanide

Ethacrynic acid

Spironolactone

Triamterene

MOA of Each Category of Diuretics

1.	Carbonic	Anhy	vdrase	Inhibitors
т.	Cai built	T FILLS	y un asc	

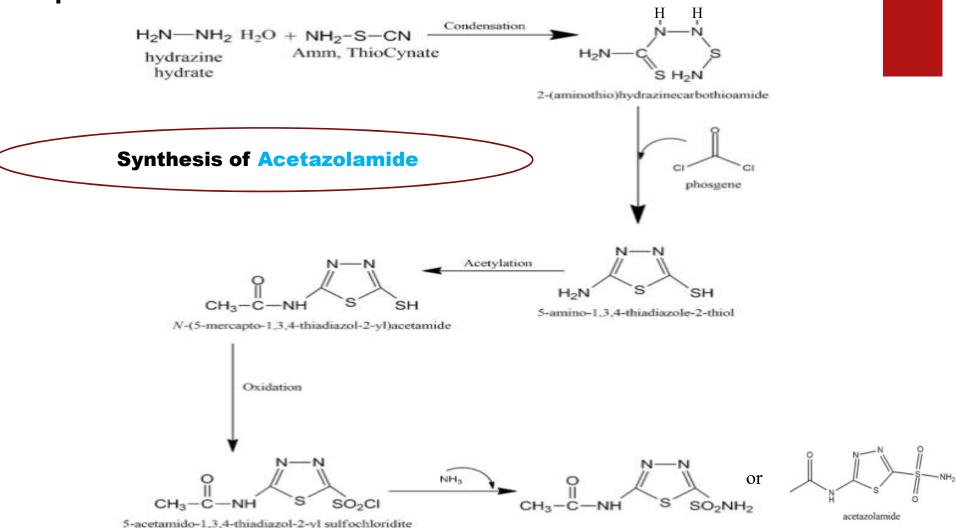
☐ These	e diuretics	s inhibit the	e enzyme	carbonic	anhydrase,	which p	olays a r	ole in t	ne reabso	rption c	of bicarbo	nate (I	HCO3-)	and h	ydrogen	ions	(H+) :	in the
proxii	mal conve	oluted tubu	le of the r	nephron.														

- ☐ By inhibiting this enzyme, they increase the excretion of sodium (Na+), bicarbonate, and water, making the urine more alkaline
- Examples include acetazolamide and methazolamide.

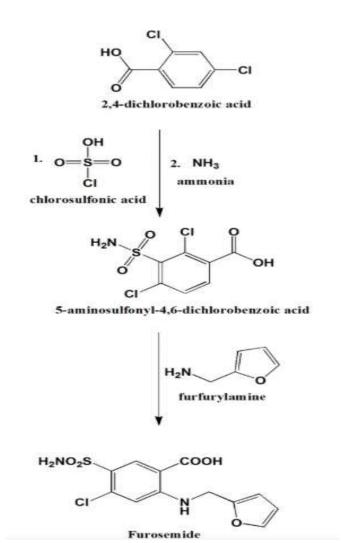
2. Thiazide Diuretics:

- ☐ Thiazides work by inhibiting the sodium-chloride symporter in the distal convoluted tubule, preventing the reabsorption of sodium and chloride ions.
- ☐ This leads to increased excretion of sodium, chloride, and water, as well as potassium.
- □ Examples include hydrochlorothiazide, chlorthalidone, and indapamide.

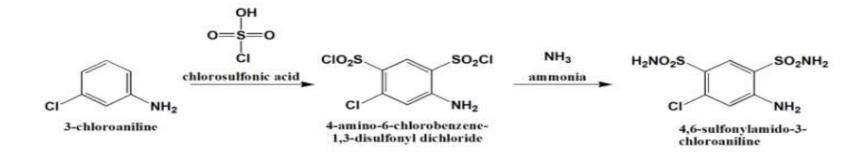
3. Loop Diuretics:


- ☐ Also known as high-ceiling diuretics, they act on the thick ascending limb of the loop of Henle.
- ☐ They inhibit the sodium-potassium-chloride cotransporter, preventing the reabsorption of these ions and increasing water excretion.
- □ Examples include furosemide, bumetanide, and ethacrynic acid.

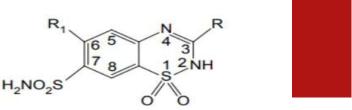
4. Potassium-Sparing Diuretics:


- ☐ These diuretics act on the collecting duct, either by blocking aldosterone receptors (aldosterone antagonists) or by directly inhibiting sodium channels.
- ☐ They promote sodium excretion and potassium retention, hence the name "potassium-sparing".
- □ Examples include spironolactone (aldosterone antagonist) and amiloride (sodium channel blocker).

5. Osmotic Diuretics:


- ☐ These agents are filtered by the glomerulus but are not reabsorbed by the tubules.
- ☐ They create an osmotic gradient that draws water into the tubules, increasing urine volume.
- □ Examples include mannitol, urea, and glycerol.

Synthesis of Furosemide



Synthesis of Chlorthiazide

Chlorothiazide

SAR of Thazides

General Structure

Position	Modification	Effect on Activity					
2-Position	Introduction of an electron-withdrawing group (e.g., Cl, CF ₃)	Essential for diuretic activity. Enhances potency.					
3-Position	Sulfonamide (-SO ₂ NH ₂) group is essential	Necessary for interaction with Na ⁺ /Cl ⁻ symporter					
3,4-Dihydro derivative (saturation of double bond)	Increases potency (e.g., hydrochlorothiazide)	More potent than unsaturated analogs.					
6-Position	Substitution with Cl or CF3 increases lipophilicity	Improves membrane permeability and potency.					
7-Position	Unsubstituted or alkyl groups tolerated	Minor effect on activity.					
Substitution at 1-N	Not favorable	Reduces activity					
Modification of sulfonamide group	N ⁴ -substitution can improve potency or alter kinetics	Some derivatives show increased duration of action					

THANK YOU