Unit-V/Part-A

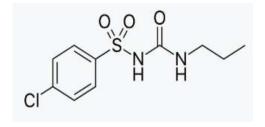
Anti-diabetic Agent

Presented By;-

Mr. Samarpan Mishra (Assistant Professor)

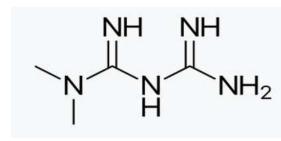
Specialization:- Pharmaceutical Chemistry

Diabetes?

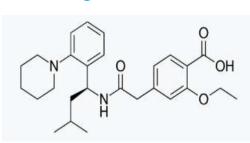

- 1. **Diabetes** is a <u>chronic metabolic disease</u> characterized by <u>high blood sugar</u> (glucose) levels.
- 2. **Normally,** your body uses a hormone called <u>insulin</u> (made by the pancreas) to move glucose from the bloodstream into cells, where it's used for energy.
- In diabetes, this process doesn't work properly either because:
 - a. Your body doesn't make enough insulin, or
 - b. Your body can't use insulin properly (insulin resistance)

Types of Diabetes

Type of Diabetes	Cause	Key Features
Type 1 Diabetes	Autoimmune destruction of insulin-producing beta cells in pancreas	- Sudden onset- Usually in children/young adults- Requires insulin for life
Type 2 Diabetes		- Gradual onset- Often in adults- Strongly linked to obesity and lifestyle
Gestational Diabetes		- Occurs in pregnancy- Usually disappears after delivery- Risk of Type 2 later
Prediabetes	Impaired glucose regulation (not high enough to be diabetes)	- Often no symptoms- Reversible- Warning stage for developing Type 2
MODY (Rare)	(tenefic multations affecting insulin secretion	- Inherited (autosomal dominant)- Early onset (teens to 30s)- Not always insulin-dependent
Secondary Diabetes		- Caused by another disease or drug- Often reversible if underlying issue is treated


Classification of Anti-diabetic Agent

- 1. Insulin and its Analog:- Insulin, Insulin Lispro, Glargine
- 2. Sulfonyl ureas:- Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride.
- 3. Biguanides:- Metformin.
- 4. Thiazolidinediones:- Pioglitazone, Rosiglitazone.
- 5. **Meglitinides:-** Repaglinide, Nateglinide.
- 6. Glucosidase inhibitors:- Acrabose, Voglibose.


Chlorpropamide

Glimepiride

Metformin

Pioglitazone

Repaglinide

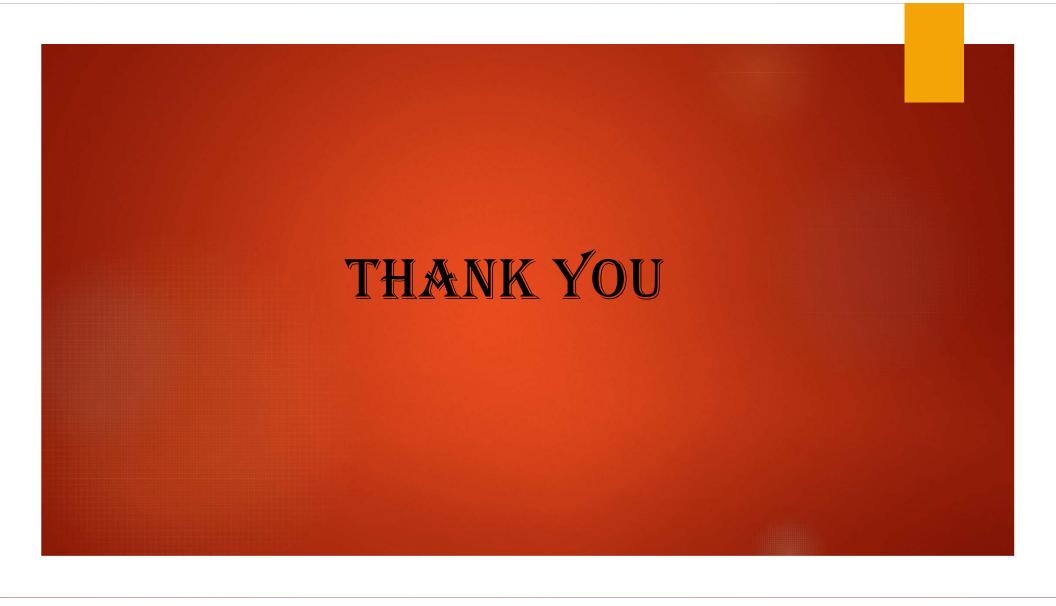
Rosiglitazone

Nateglinide

Rosiglitazone

Voglibose

MOA of Common Anti-diabetic Drugs


Drug	Class	Mechanism of Action (MOA)
Insulin	Insulin & analogs	Replaces/supplements natural insulin → promotes glucose uptake in muscle, fat, liver
Tolbutamide*	Sulfonylurea (1st gen)	Stimulates insulin secretion by blocking ATP-sensitive K^+ channels in pancreatic β -cells
Chlorpropamide	Sulfonylurea (1st gen)	Same as above: enhances insulin release via K^+ -ATP channel blockade in β -cells
Glipizide	Sulfonylurea (2nd gen)	Same as above: more potent, faster onset than 1st gen
Glimepiride	Sulfonylurea (3rd gen)	Stimulates insulin secretion by enhancing β-cell depolarization and calcium influx
Metformin	Biguanide	Activates AMPK → ↓ hepatic gluconeogenesis, ↑ peripheral insulin sensitivity
Pioglitazone	Thiazolidinedione (TZD)	Activates PPAR- $\gamma \rightarrow \uparrow$ insulin sensitivity in adipose, muscle tissues
Rosiglitazone	Thiazolidinedione (TZD)	Same as above: enhances glucose uptake via PPAR-γ activation
Repaglinide	Meglitinide	Stimulates rapid, short-acting insulin secretion by blocking β-cell K ⁺ -ATP channels
Nateglinide	Meglitinide	Similar to Repaglinide: promotes quick insulin release in response to meals
Acarbose	α-Glucosidase inhibitor	Inhibits intestinal α -glucosidase \rightarrow delays carbohydrate digestion and postprandial glucose rise
Voglibose	α-Glucosidase inhibitor	Same as Acarbose: slows glucose absorption in small intestine by enzyme inhibition

Synthesis of Tolbutamide

SAR of Tolbutamide

General structure - Ar-SO₂-NH-CO-R¹

Structural Feature	SAR Observation	Effect on Activity
Aryl (Ar) group	A para-substituted phenyl ring is essential (e.g., p-methyl in tolbutamide)	Enhances binding to the sulfonylurea receptor (SUR1)
Sulfonyl group (SO ₂)	Must be directly attached to the aromatic ring	Required for hypoglycemic activity
Urea linkage (-NH-CO-)	Essential for activity	Maintains the correct conformation for receptor binding
R¹ group (on urea)	Usually a bulky aliphatic or cyclic group (e.g., butyl in tolbutamide)	Affects potency, duration, and binding affinity
Length of alkyl chain (R1)	Increasing chain length up to a certain limit increases potency; tolbutamide has a butyl group	Too long chains reduce activity due to poor receptor binding
Electron-withdrawing groups on aromatic ring	Decrease activity	Reduce electron density needed for receptor interaction
Lipophilicity	Moderate lipophilicity improves membrane permeability and receptor binding	Very lipophilic drugs (e.g., second-gen) have higher potency

