Enzymes Presented By; Mr Som

Mr. Samarpan Mishra (Assistant Professor)

Specialization:- Pharmaceutical Chemistry

INTRODUCTION

- Enzymes are biological catalysts, mostly proteins, that accelerate chemical reactions within living organisms without being consumed in the process.
- ☐ They are essential for various metabolic processes, including digestion, respiration, and muscle function.

PROPERTIES OF ENZYMES

- 1) Catalytic nature: Enzymes speed up chemical reactions without being consumed.
- 2) Specificity: Each enzyme is specific to a particular substrate or type of reaction.
- 3) Efficiency: Enzymes are highly efficient and can catalyze thousands of reactions per second.
- 4) Reversibility: Many enzymes can catalyze reactions in both forward and reverse directions.
- 5) Saturation: Enzyme activity increases with substrate concentration up to a certain point, after which it levels off.
- 6) Regulation: Enzymes can be activated or inhibited by other molecules, allowing control of metabolic pathways.
- 7) Reusable: Enzymes are not altered permanently during the reaction and can be used repeatedly.
- 8) Protein nature: Most enzymes are proteins (except ribozymes), and their function depends on their 3D structure.
- 9) Sensitivity to temperature and pH: Enzymes work best at an optimal temperature and pH; extremes can denature them.

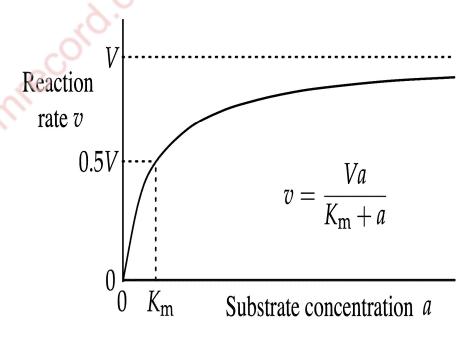
IUBMB CLASSIFICATION OF ENZYMES

The IUBMB classification system classifies enzymes based on the type of chemical reaction they catalyze and assigns them a unique EC number. This system, maintained by the <u>International Union of Biochemistry and Molecular Biology (IUBMB)</u>

The six original classes are:-

- 1) Oxidoreductases (EC 1): Catalyze oxidation-reduction reactions, involving the transfer of electrons or hydrogen atoms.
- 2) Transferases (EC 2): Transfer a functional group between two molecules.
- 3) Hydrolases (EC 3): Catalyze hydrolysis reactions, where bonds are broken by the addition of water.
- 4) Lyases (EC 4): Catalyze the breaking of bonds by means other than hydrolysis or oxidation.
- 5) Isomerases (EC 5): Catalyze the conversion of one isomer into another.
- 6) Ligases (EC 6): Catalyze the formation of bonds between molecules, often with the expenditure of energy.

A seventh class, Translocases (EC 7), has been added:-


7) Translocases (EC 7): Catalyze the movement of ions or molecules across membranes or within membranes.

ENZYME KINETICS

- □ Enzyme kinetics is the study of how enzymes catalyze chemical reactions and how these reactions are affected by factors like substrate concentration, temperature, and inhibitors.
- ☐ It helps understand enzyme mechanisms, metabolic pathways, and how drugs or modifiers influence enzyme activity

MICHAELIS-MENTEN PLOT

- □ The Michaelis-Menten plot is a graphical representation of the relationship between the rate of an enzyme-catalyzed reaction (V_0) and the substrate concentration [S].
- ☐ It's a <u>hyperbolic curve</u> that <u>shows</u> <u>how the</u> <u>reaction rate initially increases rapidly with</u> <u>increasing substrate concentration, then</u> <u>plateaus as the enzyme becomes saturated.</u>
- ☐ The plot is a visual representation of the Michaelis-Menten equation, which describes the kinetics of enzyme-substrate reactions.

MICHAELIS-MENTEN EQUATION

Michaelis-Menten Equation:-

$$V_0 = rac{V_{max} \cdot [S]}{K_m + [S]}$$

Key Terms:

- 1. V₀ (Initial velocity): Reaction rate at the beginning before the substrate is significantly depleted.
- 2. V_{max} (Maximum velocity): The highest rate of reaction when the enzyme is saturated with substrate.
- 3. K_m (Michaelis constant):
 - Substrate concentration at which $V_0=rac{1}{2}V_{max}$
 - Indicates enzyme's affinity for its substrate:
 - Low K_m = high affinity
 - High K_m = low affinity

MICHAELIS - MENTEN EQUATION DERIVATION

The **Michaelis-Menten equation** describes the rate of enzymatic reactions by relating reaction rate (v) to substrate concentration ([S]). Here's a clear step-by-step derivation:-

Step 1: The Basic Reaction

An enzyme (E) binds a substrate (S) to form an enzyme-substrate complex (ES), which can either dissociate back or form product (P):-

$$E+S{\overset{k_1}{\rightleftharpoons}}ES\overset{k_2}{
ightarrow}E+P$$

Step 2: Assumptions

1.Steady-State Assumption:

The concentration of the ES complex remains constant over time:-

$$\frac{d[ES]}{dt} = 0$$

2.Initial Velocity (v₀):

Measure the rate before significant product accumulates:-

$$v=rac{d[P]}{dt}=k_2[ES]$$

3. Total Enzyme Concentration

$$[E]_T = [E] + [ES]$$

Step 3: Express [ES]

From the steady-state assumption:-

$$k_1[E][S] = (k_{-1} + k_2)[ES]$$

Solve for [ES]:

$$[ES] = rac{k_1[E][S]}{k_{-1} + k_2}$$

Define:

$$K_m=rac{k_{-1}+k_2}{k_1}\Rightarrow [ES]=rac{[E][S]}{K_m}$$

Now, express [E] in terms of total enzyme:

$$[E] = [E]_T - [ES]$$

Substitute back:

$$[ES] = rac{([E]_T - [ES])[S]}{K_m}$$

Solve for [ES]:

$$[ES](K_m+[S])=[E]_T[S]\Rightarrow [ES]=rac{[E]_T[S]}{K_m+[S]}$$

Step 4: Final Equation

Now plug [ES] into the velocity equation:

$$v=k_2[ES]=k_2\cdotrac{[E]_T[S]}{K_m+[S]}$$

Define:

$$V_{\max} = k_2 [E]_T$$

So the Michaelis-Menten Equation is:

$$v = rac{V_{ ext{max}}[S]}{K_m + [S]}$$

LINE-WEAVE BURKE PLOT

- The Lineweaver–Burk plot (or double reciprocal plot) is a graphical representation of the Lineweaver–Burk equation of enzyme kinetics, described by Hans Lineweaver and Dean Burk in 1934.
- ☐ The Lineweaver-Burk plot <u>results</u> in a <u>straight line with the slope equal</u> to KM/k2[E]0 and y-intercept equal to 1/k2[E]0 which is 1/V max via Equation.

LINE-WEAVE BURKE EQUATION

The plot provides a useful graphical method for analysis of the Michaelis-Menten equation:

Taking the reciprocal gives

$$V = rac{V_{ ext{max}}[S]}{K_m + [S]}$$

$$rac{1}{V} = rac{K_m + [S]}{V_{max}[S]} = rac{K_m}{V_{max}}rac{1}{[S]} + rac{1}{V_{max}}$$

where

- ➤ V is the reaction velocity (the reaction rate),
- **Km** is the Michaelis–Menten constant,
- > Vmax is the maximum reaction velocity, and
- > [S] is the substrate concentration.

The Lineweaver–Burk plot was widely <u>used</u> to determine important terms in enzyme kinetics, such as Km and Vmax, before the wide availability of powerful computers and non-linear regression software.

ENZYME INHIBITORS

Inhibitor Name	Target Enzyme	
Methotrexate	Dihydrofolate reductase	
Aspirin	Cyclooxygenase (COX-1 and COX-2)	
Penicillin	Transpeptidase (bacterial cell wall synthesis)	
Allopurinol	Xanthine oxidase	
Atorvastatin	HMG-CoA reductase	
Neostigmine	Acetylcholinesterase	
Captopril	Angiotensin-converting enzyme (ACE)	
Sildenafil	Phosphodiesterase type 5 (PDE5)	
Disulfiram	Aldehyde dehydrogenase	
Ritonavir	HIV protease	
Ritonavir Fluoxetine	Serotonin reuptake transporter (indirectly inhibits degradation enzymes)	
Cyanide	Cytochrome c oxidase (in mitochondrial ETC)	
Arsenic	Pyruvate dehydrogenase	

ENZYME INDUCTION AND REPERSSION

- ☐ Induction: Increases enzyme synthesis in response to a specific stimulus (e.g., substrate, inducer), leading to higher enzyme levels
- □ Repression: Decreases enzyme synthesis in response to a specific stimulus (e.g., end product, corepressor), leading to lower enzyme levels.

COENZYME

- □ A coenzyme is defined as an <u>organic molecule</u> that binds to the active sites of certain enzymes to <u>assist in the catalysis of a reaction</u>.
- □ <u>Coenzymes</u> often act as <u>carriers</u> of <u>electrons</u>, <u>atoms</u>, <u>or functional groups</u> transferred in the reaction.

COENZYMES AND THEIR BIOLOGICAL ROLES

Coenzyme	Derived From	Role in Enzyme Function
NAD ⁺ (Nicotinamide adenine dinucleotide)	Niacin (Vitamin B3)	Electron carrier in redox reactions
FAD (Flavin adenine dinucleotide)	Riboflavin (Vitamin B2)	Electron carrier in redox reactions
Coenzyme A (CoA)	Pantothenic acid (Vitamin B5)	Carries acyl groups (e.g., acetyl group)
TPP (Thiamine pyrophosphate)	Thiamine (Vitamin B1)	Transfers aldehyde groups; key in decarboxylation reactions
Biotin	Biotin (Vitamin B7)	Carries CO ₂ in carboxylation reactions
Pyridoxal phosphate (PLP)	Pyridoxine (Vitamin B6)	Amino group transfer in transamination reactions
Tetrahydrofolate (THF)	Folic acid (Vitamin B9)	Transfers one-carbon units (e.g., methyl, methylene)
Cobalamin (Vitamin B12)	Vitamin B12	Involved in rearrangement reactions and methyl group transfers
Lipoic acid	Not vitamin-derived	Carries acyl groups and electrons in oxidative decarboxylation

THERAPEUTIC AND DIAGNOSTIC APPLICATION OF ENZYME AND ISOENZYME

Therapeutic Applications:

- 1) Leukemia: Certain types of leukemia can be treated with bacterial asparaginase.
- 2) Lens Extraction: Chymotrypsin is used to dissolve ligaments between the lens and cornea during lens extraction.
- 3) **Dermal Ulcers/Burns:** Collagenase can clean dermal ulcers and severe burns by removing dead tissue.
- 4) **Drug Delivery:** Hyaluronidase facilitates the subcutaneous injection of drugs.
- 5) Allergy Treatment: Penicillinase is used to treat penicillin allergies.
- 6) Blood Clot Dissolution: Streptokinase and urokinase dissolve blood clots, such as those caused by myocardial infarctions.
- 7) **Digestive Disorders:** Enzymes like pepsin, lipase, amylase, and trypsin peptidase are used to treat digestive problems and chronic pancreatitis.
- 8) Enzyme Replacement Therapy: Treating enzyme deficiencies, such as in cystic fibrosis, helps with digestion and overall well-being.

THERAPEUTIC AND DIAGNOSTIC APPLICATION OF ENZYME AND ISOENZYME

Diagnostic Applications:

- 1) Heart Attacks: Enzymes like lactate dehydrogenase (LDH) and creatine kinase (CK) are measured to detect heart attacks.
- 2) Liver Damage: Alanine transaminase (ALT) levels are elevated in acute liver damage.
- 3) Bone Diseases: Alkaline phosphatase (ALP) is elevated in bone diseases.
- 4) **Prostate Cancer:** Acid phosphatase can be a marker for prostate cancer.
- 5) Other Diseases: Enzymes like ceruloplasmin and lipase are used to diagnose liver function, while creatine kinase and lactate dehydrogenase can indicate tissue damage.
- 6) Metabolic Disorders: Measuring specific enzymes can help diagnose and manage metabolic disorders.
- 7) **Cancer Detection:** Enzymes like cathepsin-D and cysteine cathepsins are associated with breast cancer and other cancers.

