# BIOMOLECULES

# BIOMOLECULES

- **Defination;** Biomolecules are organic compounds that are produced by living organisms and are essential for life.
- **▶** Functions of biomolecules;-
  - □ Structural support: Biomolecules provide the structural components for living cells
  - Energy: Biomolecules provide and store energy
  - ☐ Growth and development: Biomolecules help organisms grow and develop
  - ☐ Immune response: Biomolecules help organisms respond to immune challenges
  - ☐ Genetic information: Biomolecules carry genetic information

# BIOMOLECULES

#### **▶** Classification of Biomolecules

- □ **Proteins**: A primary biomolecule that is essential for life
- □ Nucleic acids: A primary biomolecule that stores genetic information, such as DNA and RNA
- □ Carbohydrates: A primary biomolecule that can be structural or a source of energy
- □ Lipids: A primary biomolecule that helps move fats, fatty acids, and cholesterol

# 1. CARBOHYDRATES

**Defination;-** In biochemistry, carbohydrates are organic molecules made up of carbon, hydrogen, and oxygen in ratio 1:2:1. They have most abundant moecules in nature.

# BIOLOGICAL ROLE OF CARBOHYDRATES

The biological role of carbohydrates is to provide energy for the body, achieved by regulating blood glucose levels; other functions include:

- **Energy source:-** Carbohydrates are the body's main source of readily available energy, particularly in the form of glucose which fuels the brain, muscles, and other organs.
- □ **Blood sugar regulation:** Carbohydrates help maintain stable blood sugar levels by influencing the release of insulin, preventing drastic fluctuations.
- □ **Protein sparing:**-By providing energy, carbohydrates prevent the body from breaking down muscle protein for fuel.
- Preventing ketosis:-Carbohydrates help break down fatty acids, preventing the body from entering a state of ketosis where it burns fat for energy instead of glucose.
- □ **Dietary fiber:**-Certain carbohydrates, like fiber, aid in digestion by adding bulk to stool and promoting regular bowel movements.
- □ Cell recognition:-Carbohydrates on cell membranes play a role in cell-to-cell recognition and communication.
- □ Structural component:-Some complex carbohydrates, like cellulose in plants, provide structural support.
- □ Flavor and sweetness:-Simple sugars like fructose contribute to the taste of food.

# CLASSIFICATION OF CARBOHYDRATES

Classified on the basis of their behaviour in hydrolysis. They are mainly classified into three groups:

- Monosaccharide;- It is a polyhydroxy aldehyde & ketones, Which can not be decomposed by hydrolysis to give a simple carbohydrates. E.g. Glucose, Fractose.
- □ **Disaccharides**;- Yield two Monosaccharide molecules on hydrolysis. E.g.- Sucrose & Maltose.
- □ **Polysaccharides**;- Yield more then two Monosaccharide molecules on hydrolysis. E.g.- starch.

# CLASSIFICATION OF CARBOHYDRATES

#### Classified on the basis of their Carbon Atoms

```
Triose; - C<sub>6</sub>H<sub>6</sub>O<sub>3</sub> E.g. Glyceraldehydes, dihydroxyacetone
```

Tetroses; - C4H804 E.g. Erythrose, Threose

Pentoses; - C5H1005 E.g. Ribulose, Aribinose

Hexoses; - C6H12O7 E.g. Flucose, Freactose, Galactose

Heptoses; - C7H1407 E.g. Sedoheptulose, Glucoheptose

# CLASSIFICATION OF CARBOHYDRATES

### Classified on the basis of their Functional group

- 1. Aldose;- The functional group is aldehyde CHO E.g. glyceraldehyde, glucose.
- 2. Ketoses;- The functional group is ketone C=O E.g. dihydroxy acetone, fractose.

# 2. PROTEINS

**Definition;-** In biochemistry, proteins are complex molecules made up of amino acids that perform many functions in the body.

#### **Biological Role of Proteins**

- **Structural component of cells**: Proteins form the structural component of cells.
- **Enzymes**: Proteins form enzymes, which are biological catalysts that speed up chemical reactions in cells.
- ▶ **Hormones**: Proteins form hormones, such as insulin and glucagon.
- **Repair mechanism**: Proteins are involved in the body's repair mechanism.
- **Defense against infections**: Proteins, such as antibodies, help the body defend against infections.
- **Digestion**: Proteins, such as enzymes, break down complex food substances into simpler molecules that can be absorbed into the blood.
- **Energy**: Proteins provide energy to the body.
- ▶ Muscle contraction: Proteins, such as motor proteins, generate the forces that cause muscle contraction.

# **PROTEINS**

- □ Classification Based on their Structure
  - > Fibrous protein
  - > Globular protein
- □ Classification Based on their Composition
  - Simple protein
  - > Conjugated protein
- Classification Based on their Composition

Structural Protein, Enzyme, Hormones, Pigments, Transport Protein, Contractile Proteins, Toxins, Storage Protein

# CLASSIFICATIONS OF PROTEINS

#### □ Classification Based on their Structure

#### **Fibrous Proteins**

- ▶ Structure: Long polymer chains arranged parallel to each other, forming long fibers or sheets
- ▶ **Properties**: Tough, resistant to water, and mechanical strength
- **Examples**: Keratin, collagen, elastin, and fibrin
- **Function**: Structural components of tissues like bone, hair, tendons, and leather

#### **Globular Protein**

- ▶ Structure: Polymer chains fold back on themselves to form compact, nearly spherical shapes
- ▶ **Properties**: Water-soluble and relatively mobile within a cell
- **Examples**: Enzymes, antibodies, hormones, toxins, and hemoglobin
- ▶ Function: Transport simple molecules or electrons from one place to another

# CLASSIFICATIONS OF PROTEINS

► Classification Based on their Composition

#### **Simple Protein**

- ▶ Also called <u>homoproteins</u>, these proteins are made up of only amino acids
- **Examples** albumin, collagen, and keratin

#### **Conjugated proteins**

- ▶ Also called <u>heteroproteins</u>, these proteins are made up of amino acids and non-protein components called prosthetic groups
- **Examples** glycoproteins, chromoproteins, and phosphoprotein

# CLASSIFICATIONS OF PROTEINS

#### Classification Based on their Composition

#### **Structural proteins**

Maintain the shape of cells and tissues. Examples include collagen in connective tissue, keratin in hair and skin, and myosin in muscles.

#### **Enzymatic proteins**

> Speed up chemical reactions in cells, also known as metabolism. Enzymes are biological catalysts that are essential for most cellular processes.

#### **Transport proteins**

Move molecules across cell membranes, such as nutrients, ions, and waste products.

#### **Storage proteins**

▶ Store amino acids and metal ions. Examples include egg white (albumin) and legume storage proteins.

#### **Contractile proteins**

Responsible for internal movement of smooth muscles, such as those in digestion, reproduction, and glands. Myosin is an example of a contractile protein.

#### **Defensive proteins**

▶ Protect the body from foreign pathogens. Antibodies are an example of a defensive protein.

# 3. AMINO ACIDS

- ▶ In biochemistry, amino acids are organic compounds that are the building blocks of proteins.
- ▶ Amino acids contain an amino group (–NH2) and Carboxylic acid group (–COOH).
- ▶ Both group attached to an Alpha carbon **or** R-Group that is unique to each amino acid.

#### Structure of amino acid

# AMINO ACIDS

#### Biological role of amino acids;-

- ▶ Amino acids are the building blocks of proteins, which are polymers of amino acids.
- L-amino acids are essential for life and are found in all kingdoms of life.
- ▶ Other biological functions
- Amino acids help with tissue repair, digestion, and the transportation of molecules.
- ► They are also involved in the production of neurotransmitters, catecholamines, and other important molecules.
- Amino acids are involved in nitrogen metabolism, which is the process of removing excess nitrogen from the body.
- Amino acids are involved in epigenetics and modulation of reactive oxygen and nitrogen species

# CLASSIFICATIONS OF AMINO ACIDS

Non-essential amino acids: These amino acids are produced by the body and do not need to be consumed. Out of the twenty amino acids, ten are non-essential.

Glycine, alanine, serine, cysteine, glutamine, tyrosine, proline, aspartic acid, asparagine, and glutamic acid are amino acid.

Essential Amino Acids: These amino acids are not synthesized by the body and must be obtained from food. Out of the twenty amino acids, ten are non-essential.

Valine, leucine, isoleucine, arginine, lysine, threonine, phenylalanine, tryptophan, and histidine are the amino acids that make up the human body.

# 4. LIPIDS

- ▶ "Lipids are organic compounds that contain hydrogen, carbon, and oxygen atoms, which form the framework for the structure and function of living cells."
- ▶ These organic compounds are nonpolar molecules, which are soluble only in nonpolar solvents and insoluble in water because water is a polar molecule.
- In the human body, these molecules can be synthesized in the liver and are found in oil, butter, whole milk, cheese, fried foods and also in some red meats.

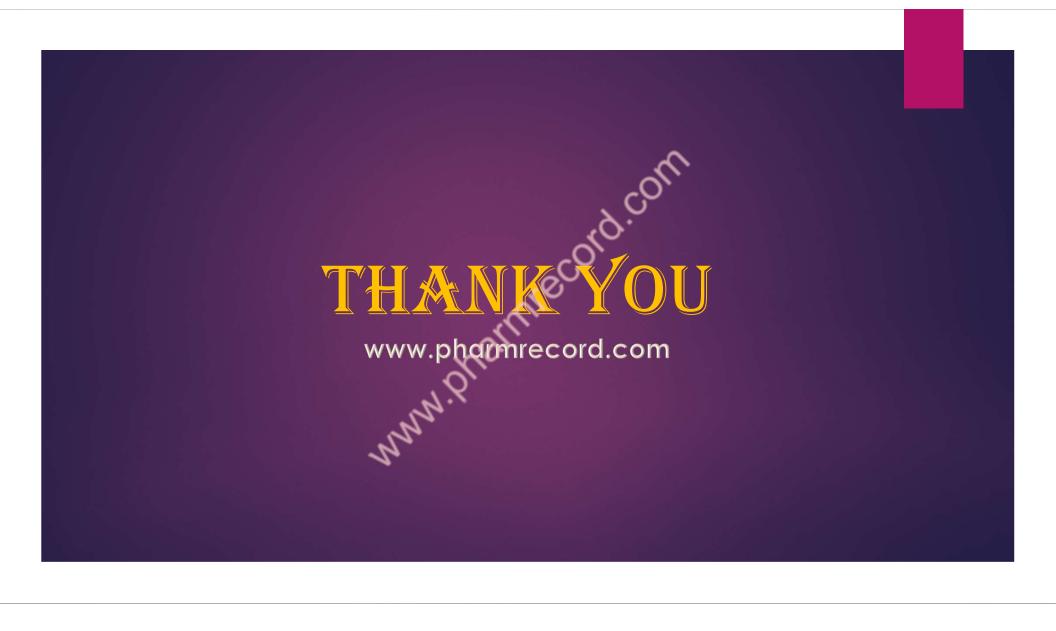
# **LIPIDS**

#### These biological roles include:-

- > Energy storage: Lipids are a primary energy reserve for the body.
- > Insulation: Lipids help insulate the body.
- > Organ protection: Lipids cushion internal organs like the heart.
- **Hormone production**: Some lipids are essential hormones in the body.
- **Vitamin absorption**: Lipids help the body absorb vitamins.
- **Chemical identification**: Lipids act as chemical identifiers for specific membranes.
- > Signaling: Lipids act as signaling molecules.
- ➤ Cell membrane structure: Lipids are structural components of cell membranes, which control what enters and exits cells.

# **CLASSIFICATIONS OF LIPIDS**

#### **Simple Lipids**


Esters of fatty acids with various alcohols.

- Fats: Esters of fatty acids with glycerol. Oils are fats in the liquid state
- **Waxes**: Esters of fatty acids with higher molecular weight monohydric alcohols

#### Complex Lipids

Esters of fatty acids containing groups in addition to alcohol and fatty acid.

- Phospholipids: These are lipids containing, in addition to fatty acids and alcohol, phosphate group. They frequently have nitrogen-containing bases and other substituents, E.g. in glycerophospholipids the alcohol is glycerol and in sphingophospholipids the alcohol is sphingosine.
- ➤ Glycolipids (glycosphingolipids): Lipids containing a fatty acid, sphingosine and carbohydrate.
- > Other complex lipids: Lipids such as sulfolipids and amino lipids. Lipoproteins may also be placed in this category

