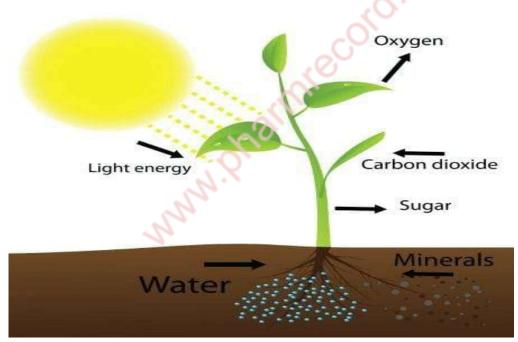
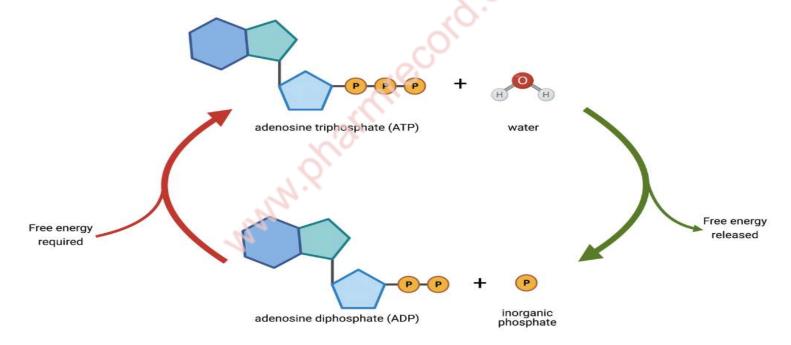
Bioenergetics

Presented By,

Mr. Samarpan Mishra (Assistant Professor)

Specialization – Pharmaceutical Chemistry


Bioenergetics


Energy;- The capacity doing work.

Just like;- Car need fule

Mixture need energy

Human need energy to work/grow, at a time sleeping body need energy for doing involuntary function like digestion, respiration.

What is free Energy?

The amount of energy available to do work is free energy/gibbs free energy.

Equestion of gibbs free Energy is;-

 $\Delta G = \Delta H - T\Delta S$

Where;-

ΔG Gibbs free energy

ΔH Change in enthalpy

T Temperature in k

 ΔS Change in entropy

Enthalpy

Enthalpy is the measurement of energy in a thermodynamic system.

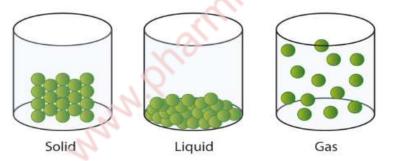
The quantity of enthalpy equals to the total content of heat of a system, equivalent to the system's internal energy plus the product of volume and pressure.

Formula;-

H = E + PV

Were;-

H= enthalpy


E= Internal energy

P= pressure

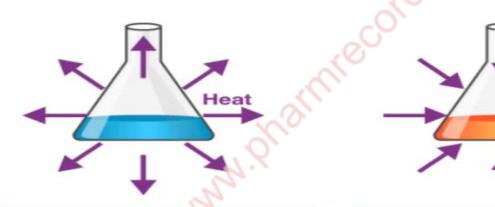
V= volume

Entropy

Thermodynamic viewpoint entropy is defined as a measure of randomness or disorder of a system.

For Ex;- The entropy of solid, where the partials are not free to move, is less then the entropy of gas, where the partial will fill the container.

Enthalpy vs. Entropy


Enthalpy

- Total energy in a system
- □ H = U + PV
- □ Total heat energy in a system
- Depends on Temperature, pressure, and composition of the system
- Tells how much heat is present in a system

Entropy

- Measure of disorder in a system
- $\triangle S = \triangle Q / T$
- Randomness of molecules
- Depends on Path taken to reach the current state
- Measures the tendency of a system to become more disordered

Exothermic & Endothermic Reaction

Exothermic Reactions

A reaction that releases energy from the system in the form of heat.

Endothermic Reaction

A reaction that the system absorbs energy from its surrounding in the form of heat.

Mr. Samarpan Mishra (Assistant Professor) Specialization – Pharmaceutical Chemistry

Heat

Endothermic Reaction vs. Exothermic Reaction

Endothermic Reaction

- Absorb heat energy from the surrounding
- **□** Temperature decreases during reaction.
- Enthalpy of reaction is lower then that of products.
- □ Energy should be given to the system.
- Ex;- melting of ice, photosynthesis etc.

Exothermic Reaction

- **Releases heat energy to the surrounding.**
- Temperature decreases during reaction.
- Enthalpy of reaction is higher then that of product.
- **□** Energy is released from the system.
- **Ex;-** freezing of water, combustion. Etc.

Energy rich compounds

Definition:-Energy-rich compounds, like ATP, contain high-energy bonds that release significant energy upon hydrolysis, making them crucial for cellular processes and the universal energy currency in living organisms.

- □ Those compound produce free energy that is greater or equal to that of ATP ($\triangle G$ is -7.3 kcal/mol) are termed high energy compounds.
- □ Low-energy compounds have an energy yield of less than -7.3 kcal/mol.

Higher energy compound

Low energy compounds

Compound	▲G.(cal/mol)	Compound	▲G.(cal/mol)
Phosphoenol pyruvate	-14.8	ADP → AMP+Pi	-6.6
Carbamoyl phosphate	-12.3	Fractose-6-phosphate	-3.8
Cyclic AMP	-12	Glucose-1-phosphate	-5.0
Pyrophosphate	-8.0	Glucose-6-phosphate	-3.3
Acetyl CoA	-7.7		
□ ATP → ADP+Pi	-7.3		

Classification of Energy-rich compounds

Energy-rich compounds, characterized by high-energy bonds, are classified into five main groups:-

- 1. Pyrophosphates:-These are phosphate esters with two phosphate groups linked together, like ATP (adenosine triphosphate).
- 2. Acyl Phosphates:-These compounds contain an acyl group linked to a phosphate group, examples include acetyl-phosphate.
- **3. Enol Phosphates:**-These have a phosphate group attached to an enol, a molecule with a carbon-carbon double bond and an alcohol group.
- **4.** Thiol Phosphates:-These are characterized by a phosphate group linked to a sulfur atom.
- **5. Phosphagens/Guanido Phosphates:-**These are high-energy phosphate reserves, such as creatine phosphate and arginine phosphate.

ATP & Its significances

ATP, or adenosine triphosphate, is the primary energy-carrying molecule in cells, acting as the "energy currency" by storing and releasing energy through the breaking and reforming of its phosphate bonds, fueling various cellular processes.

Significances

- 1. **Muscle Contraction:** ATP provides the energy for muscle fibers to contract.
- 2. Nerve Impulse Transmission: ATP is essential for transmitting nerve signals.
- 3. **Protein Synthesis:** ATP provides the energy needed to build proteins.
- 4. Chemical Synthesis: ATP is used to power various chemical reactions within the cell.
- **5. Ion Transport:** ATP is used to move ions across cell membranes.
- 6. **DNA and RNA Synthesis:** ATP is a component of DNA and RNA and provides energy for their synthesis.
- 7. **Intracellular Signaling:** ATP provides the energy that enzymes need to activate second messengers.

Cyclic AMP & Its significances

Cyclic AMP (cAMP), a crucial intracellular second messenger, plays a vital role in regulating various cellular processes, including metabolism, gene expression, and immune function, by activating protein kinase A (PKA) and other downstream effectors.

Significances

- 1. **Metabolism:-**cAMP is involved in regulating metabolism, including mobilizing glucose and fatty acid reserves, glycogenolysis in muscle, and lipolysis in adipose tissue.
- 2. Hormone Action:-cAMP mediates the action of many hormones on their target cells, acting as an intracellular agent.
- 3. Gene Regulation:-cAMP plays a role in the regulation of gene expression, influencing transcription and protein synthesis.
- 4. **Neurotransmission:-**cAMP is involved in the regulation of neurotransmitter synthesis and the function of ion channels in the nervous system.
- 5. **Immune Function:**-cAMP is involved in regulating immune responses, including suppressing innate immune functions and modulating inflammation.
- 6. Other Cellular Processes:-cAMP influences various other cellular processes, including secretion, cell proliferation, differentiation, migration, and apoptosis.
- 7. Therapeutic Potential:-The widespread involvement of cAMP in cellular processes makes it a target for therapeutic interventions in various diseases, such as cancer, diabetes, heart failure, and neurological disorders.

ecord.com THANK YOU